Applications of Tunable Mid-Infrared Plasmonic Square-Nanoring Resonator Based on Graphene Nanoribbon

نویسندگان

چکیده

In this work, different structures are designed based on graphene square-nanoring resonator (GSNR) and simulated by the three-dimensional finite-difference time-domain (3D-FDTD) method. Depending location number of nanoribbons (GNR), proposed can be utilized as a band-pass filter, wavelength demultiplexer, or power splitter in mid-infrared (MIR) wavelengths. The tunability suggested assemblies may controlled simply changing dimensions and/or chemical potential GSNRs. Benefiting from nanoscale ultra-compact GNRs, these basic blocks for optical computing signal processing MIR

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber

In this paper, the periodic double-layer graphene ribbon arrays placed near a metallic ground plate coated by a dielectric layer are proposed and analyzed by the coupled-mode theory (CMT) to predict the perfect absorption response in the mid-infrared region. Numerical simulations of the finite-difference time-domain (FDTD) method confirm this effect and give the underlying physical origin. The ...

متن کامل

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

Tunable Plasmonic Nanoparticles Based on Prolate Spheroids

Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...

متن کامل

Optimization of the Fano Resonance Lineshape Based on Graphene Plasmonic Hexamer in Mid-Infrared Frequencies

In this article, the lineshape of Fano-like resonance of graphene plasmonic oligomers is investigated as a function of the parameters of the nanostructures, such as disk size, chemical potential and electron momentum relaxation time in mid-infrared frequencies. Also, the mechanism of the optimization is discussed. Furthermore, the environmental index sensing effect of the proposed structure is ...

متن کامل

Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.

Single-layer graphene has been shown to have intriguing prospects as a plasmonic material, as modes having plasmon wavelengths ~20 times smaller than free space (λp ~ λ0/20) have been observed in the 2-6 THz range, and active graphene plasmonic devices operating in that regime have been explored. However there is great interest in understanding the properties of graphene plasmons across the inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Plasmonics

سال: 2021

ISSN: ['1557-1955', '1557-1963']

DOI: https://doi.org/10.1007/s11468-021-01538-y